qharv.reel package

Submodules

qharv.reel.ascii_out module

qharv.reel.ascii_out.all_lines_at_idx(mm, *args, **kwargs)[source]
qharv.reel.ascii_out.all_lines_with_tag(mm, *args, **kwargs)[source]
qharv.reel.ascii_out.block_text(mm, header, trailer, **kwargs)[source]

find a block of text in between header and trailer header and trailer are not included by default

e.g. given text in mm ‘’’ begin important data 1 2 3 4 5 6 7 8 9 end important data ‘’’

mm.block_text(mm, ‘begin’, ‘end’) returns ‘’’1 2 3 4 5 6 7 8 9 ‘’’

Parameters
  • mm (mmap.mmap) – memory map to text file

  • header (str) – string indicating the beginning of block

  • trailer (str) – string indicating the end of block

qharv.reel.ascii_out.change_line(text, t0, t1)[source]
qharv.reel.ascii_out.get_key_value_pairs(mm, *args, **kwargs)[source]
qharv.reel.ascii_out.locate_block(mm, *args, **kwargs)[source]
qharv.reel.ascii_out.lr_mark(line, lmark, rmark)[source]
read a string segment from line, which is enclosed between l&rmark

e.g. extract the contents in parenteses

Parameters
  • line (str) – text line

  • lmark (str) – left marker, e.g. ‘(‘

  • rmark (str) – right marker, e.g. ‘)’

Returns

text in between left and right markers

Return type

str

qharv.reel.ascii_out.name_sep_val(mm, *args, **kwargs)[source]
qharv.reel.ascii_out.name_val_table(text, dtype=<class 'float'>)[source]
designed to parse optVariables text block

e.g. ‘’’uu_0 1.0770e+00 1 1 ON 0

uu_1 6.7940e-01 1 1 ON 1 uu_2 4.3156e-01 1 1 ON 2 ud_0 1.6913e+00 1 1 ON 5 ud_1 1.0443e+00 1 1 ON 6 ud_2 6.1912e-01 1 1 ON 7 ‘’’

return variable-value map, only the first two columns are parsed.

Args:

text (str): text block such as given in the example dtype (type): data type of value, default is float

Return:

dict: variable name -> value map

qharv.reel.ascii_out.read(fname)[source]

get a memory map pointer to file

Parameters

fname (str) – filename

Returns

memory map to file

Return type

mmap.mmap

qharv.reel.ascii_out.stay(read_func, *args, **kwargs)[source]

stay at current memory location after read

Parameters

Callable – read function, which takes mmap as first input

Returns

read but no change to mmap tell()

Return type

Callable

qharv.reel.config_h5 module

qharv.reel.config_h5.extract_checkpoint_walkers(fconfig)[source]

extract the checkpoint walkers from config.h5 file

Parameters

fconfig (str) – path to config.h5 file

Returns

a list of walkers of shape (nconf, nptcl, ndim)

Return type

np.array

qharv.reel.config_h5.loadh5(fname, path='/data')[source]

load matrix from h5 file, mimic np.loadtxt

Parameters

fname (str) – name of hdf5 to read

Returns

matrix of data

Return type

np.array

qharv.reel.config_h5.open_read(fname)[source]
qharv.reel.config_h5.open_write(fname)[source]
qharv.reel.config_h5.save_dict(arr_dict, h5file, slab=None)[source]
save a dictionary of numpy arrays into h5file

each entry will create its own sub-slab using key as name

Parameters
  • arr_dict (dict) – dictionary of numpy arrays

  • h5file (tables.file.File) – pytables File

  • slab (tables.Group, optional) – HDF5 slab, if None, then use root

qharv.reel.config_h5.save_vec(vec, h5file, slab, name)[source]

save numpy array into an h5 slab under name

Parameters
  • vec (np.array) – numpy ndarray of arbitrary dimension and type

  • h5file (tables.file.File) – pytables File

  • slab (tables.Group) – HDF5 slab

  • name (str) – name of CArray to create

qharv.reel.config_h5.saveh5(fname, mat, name='data')[source]

save matrix at root of h5 file, mimic call signature of np.savetxt

e.g. mat = np.eye(3) saveh5(‘mat.h5’, mat) $ h5ls mat.h5 data Dataset {3/2730, 3}

Parameters
  • fname (str) – name of hdf5 file to write

  • mat (np.array) – 2D numpy array of floats

  • name (str, optional) – CArray name at the root of the hdf5 file

qharv.reel.mole module

qharv.reel.mole.build_qmcpack_fname(entry)[source]

inverse of interpret_qmcpack_fname

Parameters
  • entry (dict) – a dictionary of meta data, must include

  • in key (['id','grouped','group','series','category','ext']) –

Returns

filename

Return type

str

qharv.reel.mole.clean_path(path)[source]

remove . and .. from path

Parameters

path (str) – file or folder path

Returns

clean path

Return type

str

qharv.reel.mole.files_with_regex(regex, rundir, case=True, ftype='f', **kwargs)[source]

find files with the given suffix in folder rundir rely on bash find command

Parameters
  • regex (str) – regular expression for file names

  • rundir (str) – directory containing the files to be found

  • case (bool, optional) – case sensity, default is True

  • ftype (str, optional) – files type, default is regular file ‘f’

  • may be directory 'd' (,) –

Returns

flist, a list of filenames matching the given regular expression

Return type

list

qharv.reel.mole.find(regex, rundir, **kwargs)[source]

find the first file that matches the given regular expression RuntimeError will be raised unless exactly one file is found

Parameters
  • regex (str) – regular expression for file names

  • rundir (str) – directory containing the files to be found

Returns

filename

Return type

str

qharv.reel.mole.findall(regex, rundir, prepend_star=True, **kwargs)[source]

find all matching files with regular expression in rundir

Parameters
  • regex (str) – regular expression for file names

  • rundir (str) – directory containing the files to be found

  • prepend_star (bool, optional) – add ‘*’ to regex, default True

Returns

flist, list of all matching files

Return type

list

qharv.reel.mole.interpret_qmcpack_fname(fname)[source]

extract metadata regarding the contents of a file based on its filename. QMCPACK generates files having a pre-determined suffix structure. This function will interpret the last 4 period-separated segments of the suffix.

fname examples:

qmc.s000.scalar.dat qmc.g000.s000.stat.h5 qmc.g161.s000.config.h5 qmc.g005.s001.cont.xml

Parameters

fname (str) – filename, must end in one of [‘dat’,’h5’,’qmc’,’xml’].

Returns

a dictionary of metadata.

Return type

dict

qharv.reel.qmcpack_out module

qharv.reel.qmcpack_out.opt_vars(fout, begin_tag='<optVariables', end_tag='</optVariables')[source]

Parse optimizable variables

Parameters
  • fout (str) – optimization output

  • begin_tag (str, optional) – default ‘<optVariables’

  • end_tag (str, optional) – default ‘</optVariables’

Returns

a list of dictionary, each a key-value map of opt. var.s

Return type

list

qharv.reel.qmcpack_out.orb_rot_meta(name)[source]

Parse metadata from orbital rotation variable name

Parameters

name (str) – optimizable variable name

Returns

metadata

Return type

dict

Example

>>> name = "spo-up_orb_rot_0000_0002"
>>> orb_rot_meta(name)
>>> {'prefix': 'spo-up', 'i': 0, 'j': 2}
qharv.reel.qmcpack_out.orb_rot_opt_vars(fout)[source]

Build a database of orbital rotation parameters

Parameters

fout (str) – optimization output

Returns

database of orbital rotation parameters

Return type

pd.DataFrame

qharv.reel.scalar_dat module

qharv.reel.scalar_dat.error(trace, kappa=None)[source]

Calculate the error of a trace of scalar data

Parameters
  • trace (list) – should be a 1D iterable array of floating point numbers

  • kappa (float,optional) – auto-correlation time, default is to re-calculate

Returns

stderr, the error of the mean of this trace of scalars

Return type

float

qharv.reel.scalar_dat.find_header_lines(text)[source]

Find line numbers of all headers

Parameters

text (str) – text to parse

Returns

a list of integer line numbers

Return type

list

qharv.reel.scalar_dat.get_string_io(text)[source]
Obtain StringIO object from text

compatible with Python 2 and 3

Parameters

text (str) – text to parse

Returns

file-like object

Return type

StringIO

qharv.reel.scalar_dat.parse(text)[source]

Parse text of a scalar.dat file, should be table format.

Parameters

text (str) – content of scalar.dat file

Returns

table data

Return type

pd.DataFrame

Example

>>> with open('vmc.s001.scalar.dat', 'r') as f:
>>>   text = f.read()
>>>   df = parse(text)
qharv.reel.scalar_dat.read(dat_fname)[source]
Read the scalar.dat file, should be table format.

The header line should start with ‘#’ and contain column labels.

Parameters

dat_fname (str) – name of input file

Returns

df containing the table of data

Return type

pd.DataFrame

Example

>>> df = read('vmc.s001.scalar.dat')
qharv.reel.scalar_dat.read_to_list(dat_fname)[source]

Read scalar.dat file into a list of pandas DataFrames

A line is a header if its first column cannot be converted to a float. Many scalar.dat files can be concatenated. A list will be returned.

Parameters

dat_fname (str) – name of input file

Returns

list of df(s) containing the table(s) of data

Return type

list

Example

>>> dfl = read_to_list('gctas.dat')
>>> df = pd.concat(dfl).reset_index(drop=True)
qharv.reel.scalar_dat.single_column(df, column, nequil)[source]

Calculate mean and error of a column

nequil blocks of data are thrown out; autocorrelation time is taken into

account when calculating error. The equilibrated data is assumed to have Gaussian distribution. Error is calculated for one standard deviation (1-sigma error).

Parameters
  • df (pd.DataFrame) – table of data (e.g. from scalar_dat.parse)

  • column (str) – name of column

  • nequil (int) – number of equilibration blocks

Returns

(ymean,yerr,ycorr), where ymean is the mean of column

, yerr is the 1-sigma error of column, and ycorr is the autocorrelation

Return type

(float,float,float)

qharv.reel.scalar_dat.write(dat_fname, df, header_pad='# ', **kwargs)[source]

Write dataframe to plain text scalar table format

Lightly wrap around pandas.to_string with defaults to index and float_format

Parameters
  • dat_fname (str) – output data file name

  • df (pd.DataFrame) – data

  • header_pad (str, optional) – pad beginning of header with comment string, default ‘# ‘

qharv.reel.stat_h5 module

qharv.reel.stat_h5.afobs(fp, obs_name, nequil, kappa=None, numer='one_rdm')[source]
extract “best” 1RMD output from AFQMC stat.h5 file

BackPropagated (BP)

Parameters
  • fp (h5py.File) – h5py handle of stat.h5 file

  • obs_name (str) – observable name, probably ‘FullOneRDM’

  • nequil (int) – number of equilibration BP blocks to remove

  • kappa (float, optional) – auto-correlation, default recalculate

  • numer (str, optional) – numerator to extract, default ‘one_rdm’

Returns

a dictionary of 1RDMs, one for each species (eg. u, d)

Return type

dict

qharv.reel.stat_h5.dsk_from_skall(fp, obs_name, nequil, kappa=None)[source]

extract fluctuating structure factor dS(k) from skall

Parameters
  • fp (h5py.File) – stat.h5 handle

  • obs_name (str, optional) – name the “skall” estimator, likely “skall”

  • nequil (int) – equilibration length

  • kappa (float, optional) – auto-correlation, default recalculate

Returns

(kvecs, dskm, dske),

kvectors and S(k) mean and error

Return type

(np.array, np.array, np.array)

qharv.reel.stat_h5.gofr(fp, obs_name, nequil, kappa=None, force=False)[source]

extract pair correlation function g(r) from stat.h5 file :param fp: h5py handle of stat.h5 file :type fp: h5py.File :param obs_name: observable name, should start with ‘gofr’, e.g. gofr_e_0_1 :type obs_name: str :param nequil: number of equilibration blocks to remove :type nequil: int :param kappa: auto-correlation, default recalculate :type kappa: float, optional :param force: force execution, i.e. skip all checks :type force: bool, optional

Returns

(myr, grm, gre): bin locations, g(r) mean, g(r) error

Return type

tuple

qharv.reel.stat_h5.me2d(edata, kappa=None, axis=0)[source]

Calculate mean and error of a table of columns

Parameters
  • edata (np.array) – 2D array of equilibrated time series data

  • kappa (float, optional) – pre-calculate auto-correlation, default is to re-calculate on-the-fly

  • axis (int, optional) – axis to average over, default 0 i.e. columns

Returns

(mean, error) of each column

Return type

(np.array, np.array)

qharv.reel.stat_h5.mean_and_err(handle, obs_path, nequil, kappa=None)[source]

calculate mean and error of an observable from QMCPACK stat.h5 file

Parameters
  • handle (h5py.Group) – or h5py.File or h5py.Dataset

  • obs_path (str) – path to observable, e.g. ‘gofr_e_1_1’

  • nequil (int) – number of equilibration blocks to throw out

  • kappa (float, optional) – auto-correlation, default recalculate

Returns

(mean, err), the mean and error of observable

Return type

(np.array, np.array)

qharv.reel.stat_h5.nofk(fp, obs_name, nequil, kappa=None)[source]

extract momentum estimator output n(k) from stat.h5 file

Parameters
  • fp (h5py.File) – h5py handle of stat.h5 file

  • obs_name (str) – observable name, probably ‘nofk’

  • nequil (int) – number of equilibration blocks to remove

  • kappa (float, optional) – auto-correlation, default recalculate

Returns

(kvecs, nkm, nke),

k-vectors, n(k) mean and error

Return type

(np.array, np.array, np.array)

qharv.reel.stat_h5.path_loc(handle, path)[source]
qharv.reel.stat_h5.rdm1(fp, obs_name, nequil, kappa=None)[source]

extract 1RMD output from stat.h5 file

Parameters
  • fp (h5py.File) – h5py handle of stat.h5 file

  • obs_name (str) – observable name, probably ‘1rdms’

  • nequil (int) – number of equilibration blocks to remove

  • kappa (float, optional) – auto-correlation, default recalculate

Returns

a dictionary of 1RDMs, one for each species (eg. u, d)

Return type

dict

qharv.reel.stat_h5.rhok_from_skall(fp, obs_name, nequil, kappa=None)[source]

extract electronic density rho(k) from stat.h5 file

Parameters
  • fp (h5py.File) – h5py handle of stat.h5 file

  • obs_name (str, optional) – name the “skall” estimator, likely “skall”

  • nequil (int) – number of equilibration blocks to remove

  • kappa (float, optional) – auto-correlation, default recalculate

Returns

(kvecs, rhokm, rhoke)

k-vectors, rho(k) mean and error, shape (nk, ndim) notice rhok is the real-view of a complex vector, shape (2*nk,)

Return type

(np.array, np.array, np.array)

Module contents