qharv.inspect package

Submodules

qharv.inspect.axes_elem_pos module

qharv.inspect.axes_elem_pos.ase_atoms(axes, elem, pos, **kwargs)[source]

create ase Atoms object

Parameters
  • axes (np.array) – lattice vectors in row-major

  • elem (np.array) – chemical symbols

  • pos (np.array) – atomic positions

Returns

Atoms object

Return type

ase.Atoms

qharv.inspect.axes_elem_pos.ase_drij(atoms, mic=True)[source]
qharv.inspect.axes_elem_pos.ase_read(floc)[source]

use atomic simulation environment (ase) package to read file can read any format ase.read supports

Parameters

floc (str) – file location of structure file (e.g. struct.xsf)

Returns

with [‘axes’, ‘elem’, ‘pos’] entries

Return type

dict

qharv.inspect.axes_elem_pos.ase_rij(atoms, mic=True)[source]
qharv.inspect.axes_elem_pos.ase_tile(axes, elem, pos, tmat)[source]

use ase to tile supercell

Parameters
  • axes (np.array) – lattice vectors in row-major

  • elem (np.array) – chemical symbols

  • pos (np.array) – atomic positions

  • tmat (np.array) – tiling matrix (a.k.a. supercell matrix)

Returns

supercell (‘axes’, ‘elem’, ‘pos’)

Return type

(np.array, np.array, np.array)

qharv.inspect.axes_elem_pos.default_pbc(axes, kwargs)[source]
qharv.inspect.axes_elem_pos.make_atoms(axes, posl, eleml=None, **kwargs)[source]

create ase Atoms object using arbitrary element names

Parameters
  • axes (np.array) – lattice vectors in row-major

  • posl (list) – a list of atomic positions, each a np.array

  • eleml (list, optional) – a list of chemical symbols

Returns

Atoms object

Return type

ase.Atoms

qharv.inspect.axes_pos module

qharv.inspect.axes_pos.abc(axes)[source]

a,b,c lattice parameters

Parameters

axes (np.array) – lattice vectors in row-major

Returns

lattice vector lengths

Return type

np.array

qharv.inspect.axes_pos.ase_get_spacegroup_id(axes, elem, pos, **kwargs)[source]

get space group ID using atomic simulation environment

Parameters
  • axes (np.array) – lattice vectors

  • elem (np.array) – atomic symbols

  • pos (np.array) – atomic positions

qharv.inspect.axes_pos.auto_distance_table(axes, pos, dn=1)[source]

calculate distance table of a set of particles among themselves keep this function simple! use this to test distance_table(axes,pos1,pos2)

Parameters
  • axes (np.array) – lattice vectors in row-major

  • pos (np.array) – particle positions in row-major

  • dn (int,optional) – number of neighboring cells to search in each direction

Returns

dtable shape=(natom,natom), where natom=len(pos)

Return type

np.array

qharv.inspect.axes_pos.c_over_a(axes, cmax=True, warn=True, abtol=1e-06)[source]

calculate c/a ratio given a=b

Parameters
  • axes (np.array) – lattice vectors

  • cmax (bool,optional) – c vector is longest

Returns

c/a

Return type

float

qharv.inspect.axes_pos.cubic_pos(nx, ndim=3)[source]

initialize simple cubic lattice in unit cube

Parameters
  • nx (int) OR nxnynz (np.array) – number of points along each dimension

  • ndim (int) – number of spatial dimensions

Returns

simple cubic lattice positions, shape (nx**3, ndim)

Return type

np.array

qharv.inspect.axes_pos.dimer_pairs_and_dists(axes, pos, rmax, rmin=0)[source]

find all dimers within a separtion of (rmin,rmax)

Parameters
  • axes (np.array) – crystal lattice vectors

  • pos (np.array) – particle positions

  • rmax (float) – maximum dimer separation

  • rmin (float,optional) – minimum dimer separation

Returns

unique pairs, a list of (int,int) particle id pairs np.array: unique distances, a list of floats

Return type

np.array

qharv.inspect.axes_pos.dimer_rep(atoms, rmax=inf, rmin=0.0, sort_id=False, return_pairs=False)[source]

Find dimer representation of atoms

Parameters
  • atoms (ase.Atoms) – one-component system

  • rmax (float, optional) – maximum dimer separation, default np.inf

  • return_pairs (bool, optional) – return indices of dimers, default False

Returns

(com, avecs), center of mass and

half-bond vector, one for each dimer

Return type

(np.array, np.array)

qharv.inspect.axes_pos.displacement(axes, spos1, spos2, dn=1)[source]

single particle displacement spos1-spos2 under minimum image convention

Parameters
  • axes (np.array) – lattice vectors

  • spos1 (np.array) – single particle position 1

  • spos2 (np.array) – single particle position 2

  • dn (int,optional) – number of neighboring cells to search in each direction

Returns

disp_table shape=(natom,natom,ndim)

Return type

np.array

qharv.inspect.axes_pos.find_dimers(rij, rmax=inf, rmin=0, sort_id=False)[source]

find all dimers within a separtion of (rmin, rmax)

Parameters
  • rij (np.array) – distance table

  • rmax (float, optional) – maximum dimer separation, default np.inf

  • rmin (float, optional) – minimum dimer separation, default 0

  • sort_id (bool, optional) – sort pair by first atom id, default false

Returns

unique pairs, a list of (int, int) particle id pairs

Return type

np.array

qharv.inspect.axes_pos.get_nvecs(axes, pos, atol=1e-10)[source]

find integer vectors of lattice positions from unit cell

Parameters
  • axes (np.array) – lattice vectors in row-major

  • pos (np.array) – lattice sites

Returns

nvecs, integer vectors that label the lattice sites

Return type

np.array

Example

>>> nvecs = get_nvecs(axes, pos)
qharv.inspect.axes_pos.pos_in_axes(axes, pos, ztol=1e-10)[source]

particle position(s) in cell

Parameters
  • axes (np.array) – crystal lattice vectors

  • pos (np.array) – particle position(s)

Returns

particle position(s) inside the cell

Return type

pos0(np.array)

qharv.inspect.axes_pos.raxes(axes)[source]

find reciprocal lattice vectors

Parameters

axes (np.array) – lattice vectors in row-major

Returns

raxes, reciprocal lattice vectors in row-major

Return type

np.array

qharv.inspect.axes_pos.rins(axes)[source]

radius of the inscribed sphere inside the given cell

Parameters

axes (np.array) – lattice vectors in row-major

Returns

radius of the inscribed sphere

Return type

float

qharv.inspect.axes_pos.rs(axes, natom)[source]

rs density parameter (!!!! axes MUST be in units of bohr)

Parameters

axes (np.array) – lattice vectors in row-major, MUST be in units of bohr

Returns

volume of cell

Return type

float

qharv.inspect.axes_pos.rwsc(axes, dn=1)[source]

radius of the inscribed sphere inside the real-space Wigner-Seitz cell of the given cell

Parameters
  • axes (np.array) – lattice vectors in row-major

  • dn (int,optional) – number of image cells to search in each dimension, default dn=1 searches 26 images in 3D.

Returns

Wigner-Seitz cell radius

Return type

float

qharv.inspect.axes_pos.tmat(axes0, axes1)[source]

calculate the tiling matrix that takes axes0 to axes

Parameters
  • axes0 (np.array) – primitive cell lattice vectors in row-major

  • axes1 (np.array) – supercell lattice vectors in row-major

Returns

tmat, such that axes1 = np.dot(tmat, axes0)

Return type

np.array

qharv.inspect.axes_pos.volume(axes)[source]

volume of a simulation cell

Parameters

axes (np.array) – lattice vectors in row-major

Returns

volume of cell

Return type

float

qharv.inspect.box_pos module

qharv.inspect.box_pos.disp_in_box(drij, box)[source]

Enforce minimum image convention (MIC) on displacement vectors.

Parameters
  • drij (np.array) – ri - rj for all pairs of particles rij

  • box (float) – side lengths of box

Returns

displacement vectors under MIC.

Return type

np.array

qharv.inspect.box_pos.displacement_table(pos, box)[source]

Calculate displacements ri-rj between all pairs of particles.

Parameters
  • pos (np.array) – particle positions

  • box (float) – side lengths of box

Returns

drij, a table of displacement vectors under MIC,

shape (natom, natom, ndim)

Return type

np.array

qharv.inspect.box_pos.pos_in_box(pos, box)[source]

Enforce periodic bounary condition (PBC) on particle positions. Simulation box contains [0, Lx)x[0, Ly)x[0, Lz)

Parameters
  • pos (np.array) – particle positions under open boundary conditions.

  • box (float) – side lengths of box

Returns

particle positions under periodic bounary conditions.

Return type

np.array

qharv.inspect.crystal module

qharv.inspect.crystal.atomic_coords(fname, pset='ion0')[source]

extract atomic positions from QMCPACK input similar to ase.Atoms.get_positions()

Parameters

fname (str) – xml input filename

Returns

axes

Return type

np.array

qharv.inspect.crystal.draw_atoms(ax, pos, **kwargs)[source]

draw atoms on ax see example in draw_crystal

Parameters
  • ax (plt.Axes) – matplotlib Axes object, must have projection=’3d’

  • pos (np.array) – array of atomic positions

  • kwargs (dict,optional) – keyword arguments passed to plt.plot

Returns

a list of plt.Line3D

Return type

list

qharv.inspect.crystal.draw_cell(ax, axes, corner=None, enclose=True, **kwargs)[source]

draw cell on ax see example in draw_crystal

Parameters
  • ax (plt.Axes) – matplotlib Axes object, must have projection=’3d’

  • axes (np.array) – lattice vectors in row-major 3x3 array

  • corner (np.array,optional) – lower left corner of the lattice ,use (0,0,0) by default

  • enclose (bool) – enclose the cell with lattice vectors ,default is True. If False, then draw lattice vectors only

  • kwargs (dict,optional) – keyword arguments passed to plt.plot

Returns

a list of plt.Line3D or Line, one for each lattice vector

Return type

list

Example

>>> # draw 2D rectangular box, centered around (0, 0)
>>> box = np.array([3.0, 1.5])
>>> axes = np.diag(box)
>>> fig, ax = plt.subplots(1, 1)
>>> lines = draw_cell(ax, axes, corner=-box/2)
>>> plt.show()
qharv.inspect.crystal.draw_crystal(ax, axes, pos, draw_super=False)[source]

draw crystal structure on ax

Example

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D

axes = np.eye(3) pos = np.array([ [0.5,0.5,0.5] ])

fig = plt.figure() ax = fig.add_subplot(1,1,1,projection=’3d’) draw_crystal(ax,axes,pos) plt.show()

Parameters
  • ax (plt.Axes) – matplotlib Axes object, must have projection=’3d’

  • axes (np.array) – lattice vectors in row-major 3x3 array

  • pos (np.array) – array of atomic positions

  • draw_super (bool) – draw 2x2x2 supercell

Returns

(cell, atoms) cell is a list of plt.Line3D for the cell,

atoms is a list of plt.Line3D for the atoms.

Return type

(list, list)

qharv.inspect.crystal.draw_dimers(ax, com, bonds, **kwargs)[source]

draw dimers on ax

Parameters
  • ax (plt.Axes) – matplotlib Axes object, must have projection=’3d’

  • com (np.array) – center of mass of dimers

  • bonds (np.array) – bond vectors of dimers

  • kwargs (dict,optional) – keyword arguments passed to plt.plot

Returns

3 plot objects (monomer1, monomer2, bond)

Return type

tuple

qharv.inspect.crystal.draw_forces(ax, pos, vel, **kwargs)[source]

draw forces on atoms

Parameters
  • ax (plt.Axes) – matplotlib Axes object, must have projection=’3d’

  • pos (np.array) – array of atomic positions

  • vel (np.array) – array of forces on each atom (or velocities)

  • kwargs (dict,optional) – keyword arguments passed to plt.plot

Returns

a list of plt.Line3D

Return type

list

qharv.inspect.crystal.draw_wigner_seitz_cell(ax, axes, nsh=1, **kwargs)[source]
qharv.inspect.crystal.lattice_vectors(fname)[source]

extract lattice vectors from QMCPACK input similar to ase.Atoms.get_cell()

Parameters

fname (str) – xml input filename

Returns

axes

Return type

np.array

qharv.inspect.crystal.set_default_atoms_styles(kwargs)[source]
qharv.inspect.crystal.set_default_cell_styles(kwargs)[source]

qharv.inspect.grsk module

qharv.inspect.grsk.ase_gofr(atoms, bin_edges, gr_norm)[source]
Calculate the real-space pair correlation function g(r) among

all pairs of atom types. Histogram distances along the radial direction, i.e. spherically averaged.

Parameters
  • atoms (ase.Atoms) – atoms

  • bin_edges (np.array) – histogram bin edges

  • gr_norm (np.array) – normalization of each bin

Returns

gr1_map, one g(r) for each pair of atom types.

Return type

dict

Example

>>> axes = np.eye(3)
>>> pos = np.array([[0, 0, 0], [0.5, 0.5, 0.5]])
>>> atoms = Atoms('H2', cell=axes, positions=pos, pbc=1)
>>> bin_edges = get_bin_edges(axes)
>>> gr_norm = get_gofr_norm(axes, bin_edges, len(pos))
>>> gr1_map = ase_gofr(atoms, bin_edges, gr_norm)
>>> gr1 = gr1_map[(0, 0)]
>>> r = 0.5*(bin_edges[1:]+bin_edges[:-1])
>>> plt.plot(r, gr1)
>>> plt.show()
qharv.inspect.grsk.ft_iso3d(myk, myr, frm)[source]
qharv.inspect.grsk.get_bin_edges(axes, rmin=0.0, rmax=None, nr=32)[source]
qharv.inspect.grsk.get_gofr_norm(axes, bin_edges, n1, n2=None)[source]
qharv.inspect.grsk.gr2sk(myk, myr, grm, rho)[source]
qharv.inspect.grsk.ift_iso3d(myr, myk, fkm)[source]
qharv.inspect.grsk.sk2gr(myr, myk, skm, rho)[source]

qharv.inspect.inp_xml module

qharv.inspect.inp_xml.check_psp_access(doc, calc_dir)[source]

check that pseudopotential files can be accessed by input

Parameters

doc (etree.Element) – must contain <hamiltonian>

Returns

can access all pseudopotentials

Return type

bool

qharv.inspect.inp_xml.check_wf_hdf5(snode, calc_dir, folded)[source]

check that spline single-particle orbitals are defined in the correct simulation cell. snode must hold the simulation cell and basis builder with a reference to the wf hdf5.

Parameters
  • snode (lxml.Element) – e.g. parsed <qmcsystem>

  • calc_dir (str) – directory to contain the QMCPACK input

  • folded (bool) – True, if DFT was performed in unit cell and orbitals are tiled to super cell

Returns

consistent

Return type

bool

qharv.inspect.inp_xml.check_wfh5_access(doc, calc_dir)[source]

check that the Bspline h5 file can be accessed from input location

Parameters
  • doc (etree.Element) – must containt <sposet_builder>

  • calc_dir (str) – directory to contain the QMCPACK input (doc)

Returns

can access all h5 files

Return type

bool

qharv.inspect.inp_xml.rcut(corr)[source]
qharv.inspect.inp_xml.validate_bspline_rcut(node, ignore_empty=False)[source]

check that 1D bspline functions have valid cutoff radius

Parameters
  • node (lxml.etree._Element) – xml node containing <simulationcell> and <correlation>.

  • ignore_empty (bool,optional) – ignore inputs without <correlation>, default=False

Returns

valid input

Return type

bool

qharv.inspect.jas module

qharv.inspect.jas.bspline_on_rgrid(doc, cid, rgrid=None, rcut=None, cusp=None)[source]

evaluate QMCPACK Basis spline on a real-space grid

doc must contain the desired Bspline <correlation> <coefficient> nodes <correlation size=”8” rcut=”4.0”>

<coefficient id=”cid” type=”Array”> 0.5 0.1 </coefficients>

</correlation>

Parameters
  • doc (etree.Element) – must contain the Bspline component to read

  • cid (str) – coefficient name (id)

  • rgrid (list) – a list of radial grid values

  • rcut (float, optional) – cutoff radius, default is to read from

  • <correlation>

  • cusp (float, optional) – cusp at r=0, default is to read from

  • <correlation>

Returns

a list of floats

Return type

list

qharv.inspect.jas.find_iopt(iopt, opt_dir)[source]

locate opt.xml file in opt_dir :param iopt: optimization step (series id) :type iopt: int :param opt_dir: path to optimization run :type opt_dir: str

Returns

floc, location of the requested opt.xml file

Return type

str

qharv.inspect.jas.get_coeff(doc, coef_id)[source]

extract coefficients from a <coefficients> node

Parameters
  • doc (etree.Element) – <coefficient> node

  • coef_id (str) – coefficient name (id), e.g. ‘uu’, ‘ud’, ‘cG2’

Returns

extracted coefficients

Return type

array-like

qharv.inspect.jas.read_dat(j2_dat)[source]

read the first two columns of a .dat file spewed out by QMCPACK

Examples

read_dat(‘J2.uu.dat’) read_dat(‘uk.g000.dat’) read_dat(‘BFe-e.ud.dat’)

Parameters

j2_dat (str) – filename

Returns

(r, v), first two columns, probably (radial grid, values)

Return type

tuple

qharv.inspect.volumetric module

qharv.inspect.volumetric.axes_func_on_grid3d(axes, func, grid_shape)[source]

put a function define in axes units on a 3D grid :param axes: dtype=float, shape=(3,3);

3D lattice vectors in row major (i.e. a1 = axes[0])

Parameters
  • func (RegularGridInterpolator) – 3D function defined on the unit cube

  • grid_shape (np.array) – dtype=int, shape=(3,); shape of real space grid

Returns

dtype=float, shape=grid_shape; volumetric data

Return type

grid (np.array)

qharv.inspect.volumetric.color_scatter(ax, xyz, vals=None, cmap_name='viridis', **kwargs)[source]

view sampled 3D scalar function using value as color

Parameters
  • ax (plt.Axes3D) – ax = fig.add_subplot(1,1,1,projection=”3d”)

  • xyz (np.array) – a list of 3D vectors [(x1,y1,z1), (x2,y2,z2), …]

  • vals (np.array, optional) – f(x,y,z) one for each xyz vector, default is all ones

  • cmap_name (str, optional) – color map name, default is ‘viridis’

  • kwargs (dict, optional) – keyword arguments to be passed to ax.scatter

Returns

scatter plot

Return type

mpl_toolkits.mplot3d.art3d.Path3DCollection

qharv.inspect.volumetric.figax3d(show_axis=True, label_axis=True, **kwargs)[source]

get a pair of fig and Axes3D similar to subplots() but for a single 3D figure

Parameters

show_axis (bool, optional) – show x, y, z axes and ticks, default True

Returns

matplotlib.figure.Figure, matplotlib.axes._subplots.Axes3DSubplot

Return type

tuple

qharv.inspect.volumetric.isosurf(ax, vol, level_frac=0.25)[source]

draw iso surface of volumetric data on matplotlib axis at given level

Example usage:

from mpl_toolkits.mplot3d import Axes3D # enable 3D projection vol = np.random.randn(10,10,10) fig = plt.figure() ax = fig.add_subplot(1,1,1,projection=’3d’) isosurf(ax,vol) plt.show()

Parameters
  • ax (plt.Axes3D) – ax = fig.add_subplot(1,1,1,projection=”3d”)

  • vol (np.array) – 3D volumetric data having shape (nx,ny,nz)

  • level_frac (float) – 0.0->1.0, isosurface value as a fraction between min and max

Returns

mesh

Return type

Poly3DCollection

Effect:

draw on ax

qharv.inspect.volumetric.read_gaussian_cube(fcub)[source]

Read Gaussian cube file

Example

entry = read_gaussian_cube(‘density.cub’) data = np.array(entry[‘data’]) assert np.allclose(data.shape, entry[‘nxyz’])

Parameters

fcub (str) – cube file name

Returns

dictionary of useful info

[axes, elem, pos, nxyz, data]

Return type

dict

qharv.inspect.volumetric.read_xsf_datagrid_3d_density(fname, header='BEGIN_DATAGRID_3D_density', trailer='END_DATAGRID_3D_density')[source]

parse DATAGRID_3D block in xsf file

Parameters
  • fname (str) – xsf file name

  • header (str) – tag marking the beginning of grid

  • trailer (str) – tag marking the end of grid

Returns

data of 3D grid

Return type

np.array

qharv.inspect.volumetric.spline_volumetric(val3d)[source]

spline 3D volumetric data onto a unit cube

Parameters

val3d (np.array) – 3D volumetric data of shape (nx,ny,nz)

Returns

3D function defined on the unit cube

Return type

RegularGridInterpolator

qharv.inspect.volumetric.write_gaussian_cube(fcub, data, overwrite=False, **kwargs)[source]
qharv.inspect.volumetric.write_gaussian_cube_text(vol, axes, elem=(1, ), pos=((0, 0, 0), ), origin=(0, 0, 0), two_line_comment='cube\nfile\n')[source]

Write Gaussian cube file using volumetric data

Parameters
  • vol (np.array) – volumetric data, shape (nx, ny, nz)

  • axes (np.array) – grid basis, e.g. np.diag((dx, dy, dz))

  • elem (array-like, optional) – list of atomic numbers, default (1,)

  • pos (array-like, optional) – list of atomic positions

  • origin (array-like, optional) – coordinates of the origin

  • two_line_comment (str, optional) – comments at file head

Returns

Gaussian file content

Return type

str

qharv.inspect.volumetric.write_stanford_ply(verts, faces)[source]

save polygons in ply format

ply is simpler than obj, but older and less used

Parameters
  • verts (np.array) – shape=(nvert,3) dtype=float, vertices in cartesian coordinates.

  • faces (np.array) – shape=(nface,nside) dtype=int, polygons each specified as a list of vertices (in vertex coordinates defined by verts).

Returns

content of the ply file

Return type

str

qharv.inspect.volumetric.write_wavefront_obj(verts, faces, normals)[source]

save polygons in obj format

obj format is more commonly used than ply

Parameters
  • verts (np.array) – shape=(nvert,3) dtype=float, vertices in cartesian coordinates.

  • faces (np.array) – shape=(nface,nside) dtype=int, polygons each specified as a list of vertices (in vertex coordinates defined by verts).

  • normals (np.array) – shape=(nvert,3) dtype=float, normal vectors used for smooth lighting. There is one normal vector per vertex.

Returns

content of the obj file

Return type

str

Module contents