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Coupling from the Past



What does CFTP do?

Generates perfect samples from a Markov chain!

Also called:
• Perfect Sampling, Exact Sampling, or Perfect Simulation
• Wilson-Propp algorithm

Markov chains are often used to sample desired probability distributions, say 𝑃 𝑥 .

The samples 𝑥1, 𝑥2, … generated by a Markov 
chain are correlated in time. If we draw 
samples every 𝑇 time steps, then we are not 
sampling 𝑃(𝑥) exactly. If 𝑇 is large enough, 
larger than what is called the mixing time, 
then the Markov chain has “forgotten its initial 
conditions” and the samples are uncorrelated 
and drawn from the correct distribution.



Markov chain sampling

A Markov chain is a memoryless random process. At each 
time step, a state jumps randomly to another state in a 
way that depends only on the value of the current state.

Toy model Markov chain

𝑁 = 10 states: 𝑥 = 𝐴, 𝐵, 𝐶, … , 𝐼
Arrows indicate the transition 
probability 𝑃 𝑥, 𝑦

Examples of a few random Markov chains 
evolving over time.

Source: setosa.io/markov



Markov chain sampling (cont)

You can think of a Markov chain’s time evolution as being 
governed by applying a random function at each time step

𝑥𝑡 = 𝑓 𝑥𝑡−1, 𝑟𝑡 where 𝑟𝑡 is a set of random numbers

𝑃𝑟𝑜𝑏[𝑦 = 𝑓 𝑥, 𝑟 ] = 𝑃 𝑥, 𝑦 = Markov chain transition probability from 𝑥 to 𝑦

Toy model Markov chain

𝑓 𝑥, 𝑟 = ቐ
min 𝑥 + 1, 𝑁 𝑤ℎ𝑒𝑛 𝑟 < 0.45
𝑥 𝑤ℎ𝑒𝑛 𝑟 < 0.46
max 𝑥 − 1,1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Each Markov chain has its 
own random numbers.

Each Markov chain has the 
same random numbers.

Coalescence:
After some time, all of the states 
converge to a single state.



Results on toy model
Main idea of CFTP: 

go back in time until coalescence occurs

To determine the coalescence time, you restart at times −𝑇 =
− 1,−2,−4,−8,−16,… and run the Markov chain forward from 𝑡 = −𝑇 to 
𝑡 = 0 until you observe the Markov chains converge to a unique state.

This is a 
perfect 
sample



Results on toy model

Coalescence times

The runtime of the algorithm is variable. You have to wait until you find a 
perfect sample. Generally, you expect the coalescence time to be 𝑂(4𝑀), 
where 𝑀 is the mixing time of the Markov chain. Altogether, the algorithm 
runtime is then 𝑂 4𝑀𝑁 where 𝑁 is the number of states.



Results on toy model

Comparison to usual MCMC-style sampling

Samples drawn from the Markov chain every T steps are correlated, while 
the CFTP samples are completely uncorrelated. 



Results on toy model

Monotonic CFTP

If your states can be partially ordered and your couplings are monotonic, 
then the algorithm can be made MUCH more efficient. Instead of checking 
that all states coalesce, you can just check whether the “top” and “bottom” 
states coalesce. In this case, the run time is 𝑂(4𝑀ℎ) where ℎ is the 
“height”, or the longest distance between the top and bottom states.

Partial order 
defined on 
states: 𝑥 ≤ 𝑦

𝑥 ≤ 𝑦 ⇒ 𝑓 𝑥, 𝑟 ≤ 𝑓 𝑦, 𝑟 ∀𝑟

Monotonic 
coupling 𝑓(𝑥, 𝑟)



MCMC on 2D Ising model

Gibbs sampling (heat-bath algorithm) MC

An important application of Markov chains is for doing statistical physics.

The Ising model is a simplified model of a ferromagnet made of up and down spins:

𝐸(𝑥) = −𝐽෍
𝑖,𝑗
𝑆𝑖 𝑆𝑗Energy:

Partition function: 𝑍 =෍
𝑥
𝑒−𝛽𝐸(𝑥)

𝑆𝑖 = ±1

Boltzmann dist.: 𝑃 𝑥 =
1

𝑍
𝑒−𝛽𝐸(𝑥)

You can sample a MC to compute 
thermal averages of observables:

𝑂 =෍
𝑥
𝑂 𝑥 𝑃 𝑥 ≈

1

𝑁𝑠
෍

𝑖=1

𝑁𝑠

𝑂(𝑥𝑖)

= 𝑥

For each time 𝑡, go from state 𝑥𝑡−1 to a new state 𝑥𝑡 by
Picking a random spin 𝑖

Setting it to 𝑆𝑖 = +1 with prob. 𝑃+ =
𝜆

𝜆+𝜆−1
, where 𝜆 = 𝑒𝛽𝐽

σ𝑗∈𝑁(𝑖) 𝑆𝑗

Setting it to 𝑆𝑖 = −1 otherwise

Defines an 𝑓 𝑥, 𝑟
that is monotonic

using random number 𝑟1

using random number 𝑟2



CFTP MCMC on 2D Ising

The lesson here is that CFTP doesn’t save you if you design 
a poorly mixing Markov chain. 

However, if you do have a well-mixing monotonic coupling 
MC, then you can basically run CFTP for no extra cost.

Critically slows down near the phase 
transition at 𝛽𝐽 ≈ 0.45

Ferromagnetic Ising model 
on 10 × 10 square lattice



Summary

• CFTP is a method for generating perfect 
samples from Markov chains.

• Pros: 
– provides perfect samples

– provides estimate of mixing time

– can be applied to interesting problems, like 
Ising model

• Cons: 
– efficient implementations are limited in 

applicability (monotonic couplings and 
extensions)

– slow when mixing time is large
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